频频曝出安全风险 AI真的那么安全吗?
作者:休闲 来源:娱乐 浏览: 【大 中 小】 发布时间:2024-12-13 17:20:59 评论数:
导读:当我们一直在讨论AI能给互联网安全带来什么影响的频频曝出时候,可能一直都忽略了一个问题: AI本身也不安全。安全
这两天的风险新闻恰如其分地提醒了我们这一点。近日,那安谷歌被曝其机器学习框架TensorFlow中存在的频频曝出严重安全风险,可被黑客用来制造安全威胁,安全谷歌方面已经确认了该漏洞并做出了整改回应。风险
虽然是那安提前发现,这些漏洞本身没有带来实质威胁,频频曝出但这条消息还是安全让一些人感到了不安。TensorFlow、风险Torch、那安Caffe这些机器学习开发框架,频频曝出差不多是安全如今AI开发者与研究者的标准配置,但这些平台最近却纷纷被曝光存在安全漏洞和被黑客利用的风险可能性。
某种意义上来说,这些消息在提醒我们同一个问题: 当我们急切的将资金与用户关系聚集在机器学习上时,也可能是将巨大的安全性问题捆绑在了身上。
更重要的是,面临AI安全问题,我们中的大部分人还处在很傻很天真的“懵懂状态”,对它的逻辑和危害性近乎一无所知。
本文希望科普一下这些内容,毕竟防患于未然。另外必须提醒开发者和企业的是,在谷歌这些大公司不遗余力地推广自家机器学习平台,并且为了吸引使用者而快速迭代、大量发布免费资源时,开发者本身一定要留个心眼,不能不假思索地使用。
比起心血毁于一旦,更多的审查机制和更严密的安全服务是非常值得的。
盲点中的魔鬼:机器学习框架的安全隐患
说机器学习平台的漏洞,有可能让开发者的心血付诸东流,这绝不是开玩笑。在今年上半年的勒索病毒事件里,我们已经见识过了如今的黑客攻击有多么恐怖,而勒索病毒本身就是利用了Windows中的漏洞,进行针对式攻击锁死终端。
可以说,在勒索病毒的洗礼之后,信息产业已经进入了“漏洞霸权时代”。只要拥有了更多漏洞,就拥有了大范围的控制权与支配权。随着黑客攻击的工具化和门槛降低,能力一般的攻击者也可以利用平台漏洞发动广泛攻击。
但在我们愈发重视“漏洞产业”带给今天世界的安全隐患时,却不自主地产生了一个视线盲区,那就是人工智能。
当下大部分AI开发任务的基本流程是这样的:一般来说,一个开发者想要从头开始开发深度学习应用或者系统,是一件极其麻烦且几乎不可能的事。所以开发者会选择利用主流的开发框架。比如这次被曝出安全隐患的谷歌TensorFlow。
利用这类平台,开发者可以用平台提供的AI能力,结合开源的算法与模型,训练自己的AI应用。这样速度快效率高,也可以吸收最先进的技术能力。这种“不能让造车者从开发轮子做起”的逻辑当然是对的,但问题是,假如轮子里面本身就有问题呢?
由于大量开发者集中利用机器学习框架训练AI是近两年的事情,此前也没有曝出过类似平台存在安全问题,所以这个领域的安全因素一直没有被重视过,可能大部分AI开发者从来都没有想过会存在安全问题。
但这次被发现的漏洞却表明:利用TensorFlow本身的系统漏洞,黑客可以很容易地制造恶意模型,从而控制、篡改使用恶意文件的AI应用。
由于一个投入使用的深度学习应用往往需要复杂的训练过程,所以恶意模型的攻击点很难短时间被察觉。但由于智能体内部的逻辑关联性,一个点被黑客攻击很可能将会全盘受控。这种情况下造成的安全隐患,显然比互联网时代的黑客攻击更加严重。
理解了这些,我们可能会达成一个并不美好的共识: 我们一直在担心的AI失控,可能根本不是因为AI太聪明想夺权,而是居心不良的黑客发动的。
AI“失控”:一个今天不得不面对的问题
相比于经典计算的信息存储与交互模式,人工智能,尤其是机器学习类任务,最大的改变之一就是展现出了信息处理的整体性和聚合性。比如著名AlphaGo,它不是对每种棋路给出固定的应对模式,而是对棋局进行预判和自我推理。它的智慧不是若干信息组成的集合,而是一个完整的“能力”。
这是AI的优点,但很可能也是AI的弱点。试想,假如AlphaGo中的某个训练模型被黑客攻击了,比如让系统吃掉对方棋子时偏偏就不打。那么最终展现出的将不是某个棋招运算失当,而是干脆一盘棋也赢不了。
说白了,AI注定是一个牵一发动全身的东西,所以平台漏洞带来的安全风险才格外可怕。
AlphaGo毕竟还只是封闭的系统,即使被攻击了大不了也就是下棋不赢。但越来越多的AI开始被训练出来处理真实的任务,甚至是极其关键的任务。那么一旦在平台层面被攻克,将带来无法估计的危险。
比如说自动驾驶汽车的判断力集体失灵、IoT体系被黑客控制、金融服务中的AI突然瘫痪、企业级服务的AI系统崩溃等等情况,都是不出现还好,一旦出现就要搞个大事情。
由于AI系统紧密而复杂的连接关系,很多关键应用将从属于后端的AI体系,而这个体系又依赖平台提供的训练模型。那么 一旦最后端的平台失守,必然引发规模化、连锁式的崩盘——这或许才是我们今天最应该担心的AI失控。
AI产业的风险,在于某个黑客一旦攻克了机器学习平台的底层漏洞,就相当于把整个大厦的最下一层给炸掉。这个逻辑此前很少被人关注,却已经被证明了其可能存在。而最可怕的是,面对更多未知的漏洞和危险,世界范围内的AI开发者近乎是束手无策的。
家与国:无法逃避的AI战略角力
在认识到AI开发平台可能出现的底层问题,以及其严重的危害性之后,我们可能会联想到国家层面的AI安全与战略角力。
今年7月,哈佛大学肯尼迪政治学院贝尔弗科学与国际事务中心发布的《人工智能与国家安全》报告里,就专门指出AI很可能在接下来一段时间内,对多数国民产业带来革命性的影响,成为产业中的关键应用。那么一旦AI安全受到威胁,整个美国经济将受到重大打击。
同样的道理,当然也适用于今天与美国抗衡的AI大国——中国。这次TensorFlow安全漏洞曝光后,我们联系了一家国内机器视觉方向的创业公司,他们所使用的训练模型全部来自于TensorFlow中的社区分享。沟通之后的结论是,如果真受到黑客恶意模型的袭击,他们的产品将瞬间瘫痪。
这仅仅是一家创业公司, 据了解国内使用TensorFlow进行训练的还包括京东、小米、中兴等大型企业,以及不少科研院所的研发项目。 未来,很有可能还有更多更重要的中国AI项目在这个平台上进行训练部署。当这些东西暴露在黑客攻击的面前,甚至控制权掌握在别国手中,我们真的可以放心这样的AI发展之路吗?
这也绝不是杞人忧天。勒索病毒爆发之后,追根溯源就会发现,这些黑客工具的源头来自美国情报系统研发的网络攻击武器。武器这种东西,制造出来就是为了杀伤的,无论是制造者使用,还是被盗后流出,最终吃亏的只能是没有防范的那群人。
各种可能性之下,AI安全问题在今天已经绝不是儿戏。而中国产业至少能做两件事: 一是组建专业的AI防护产业,将互联网安全升级为AI安全;二是必须逐步降低对国外互联网公司框架平台的依赖度,这里当然不是民粹主义的闭关锁国,而是应该给开发者更多选择,让整个产业自然而然地向国家AI安全战略靠拢。
总之,AI本身的安全防护,已经成为了开发者必须在意、大平台需要承担责任、国家竞争需要争抢的一个环节。希望永远都不要看到AI失控事件,毕竟吃一堑长一智的事情在互联网历史上已经发生太多了。
这两天的风险新闻恰如其分地提醒了我们这一点。近日,那安谷歌被曝其机器学习框架TensorFlow中存在的频频曝出严重安全风险,可被黑客用来制造安全威胁,安全谷歌方面已经确认了该漏洞并做出了整改回应。风险
虽然是那安提前发现,这些漏洞本身没有带来实质威胁,频频曝出但这条消息还是安全让一些人感到了不安。TensorFlow、风险Torch、那安Caffe这些机器学习开发框架,频频曝出差不多是安全如今AI开发者与研究者的标准配置,但这些平台最近却纷纷被曝光存在安全漏洞和被黑客利用的风险可能性。
某种意义上来说,这些消息在提醒我们同一个问题: 当我们急切的将资金与用户关系聚集在机器学习上时,也可能是将巨大的安全性问题捆绑在了身上。
更重要的是,面临AI安全问题,我们中的大部分人还处在很傻很天真的“懵懂状态”,对它的逻辑和危害性近乎一无所知。
本文希望科普一下这些内容,毕竟防患于未然。另外必须提醒开发者和企业的是,在谷歌这些大公司不遗余力地推广自家机器学习平台,并且为了吸引使用者而快速迭代、大量发布免费资源时,开发者本身一定要留个心眼,不能不假思索地使用。
比起心血毁于一旦,更多的审查机制和更严密的安全服务是非常值得的。
盲点中的魔鬼:机器学习框架的安全隐患
说机器学习平台的漏洞,有可能让开发者的心血付诸东流,这绝不是开玩笑。在今年上半年的勒索病毒事件里,我们已经见识过了如今的黑客攻击有多么恐怖,而勒索病毒本身就是利用了Windows中的漏洞,进行针对式攻击锁死终端。
可以说,在勒索病毒的洗礼之后,信息产业已经进入了“漏洞霸权时代”。只要拥有了更多漏洞,就拥有了大范围的控制权与支配权。随着黑客攻击的工具化和门槛降低,能力一般的攻击者也可以利用平台漏洞发动广泛攻击。
但在我们愈发重视“漏洞产业”带给今天世界的安全隐患时,却不自主地产生了一个视线盲区,那就是人工智能。
当下大部分AI开发任务的基本流程是这样的:一般来说,一个开发者想要从头开始开发深度学习应用或者系统,是一件极其麻烦且几乎不可能的事。所以开发者会选择利用主流的开发框架。比如这次被曝出安全隐患的谷歌TensorFlow。
利用这类平台,开发者可以用平台提供的AI能力,结合开源的算法与模型,训练自己的AI应用。这样速度快效率高,也可以吸收最先进的技术能力。这种“不能让造车者从开发轮子做起”的逻辑当然是对的,但问题是,假如轮子里面本身就有问题呢?
由于大量开发者集中利用机器学习框架训练AI是近两年的事情,此前也没有曝出过类似平台存在安全问题,所以这个领域的安全因素一直没有被重视过,可能大部分AI开发者从来都没有想过会存在安全问题。
但这次被发现的漏洞却表明:利用TensorFlow本身的系统漏洞,黑客可以很容易地制造恶意模型,从而控制、篡改使用恶意文件的AI应用。
由于一个投入使用的深度学习应用往往需要复杂的训练过程,所以恶意模型的攻击点很难短时间被察觉。但由于智能体内部的逻辑关联性,一个点被黑客攻击很可能将会全盘受控。这种情况下造成的安全隐患,显然比互联网时代的黑客攻击更加严重。
理解了这些,我们可能会达成一个并不美好的共识: 我们一直在担心的AI失控,可能根本不是因为AI太聪明想夺权,而是居心不良的黑客发动的。
AI“失控”:一个今天不得不面对的问题
相比于经典计算的信息存储与交互模式,人工智能,尤其是机器学习类任务,最大的改变之一就是展现出了信息处理的整体性和聚合性。比如著名AlphaGo,它不是对每种棋路给出固定的应对模式,而是对棋局进行预判和自我推理。它的智慧不是若干信息组成的集合,而是一个完整的“能力”。
这是AI的优点,但很可能也是AI的弱点。试想,假如AlphaGo中的某个训练模型被黑客攻击了,比如让系统吃掉对方棋子时偏偏就不打。那么最终展现出的将不是某个棋招运算失当,而是干脆一盘棋也赢不了。
说白了,AI注定是一个牵一发动全身的东西,所以平台漏洞带来的安全风险才格外可怕。
AlphaGo毕竟还只是封闭的系统,即使被攻击了大不了也就是下棋不赢。但越来越多的AI开始被训练出来处理真实的任务,甚至是极其关键的任务。那么一旦在平台层面被攻克,将带来无法估计的危险。
比如说自动驾驶汽车的判断力集体失灵、IoT体系被黑客控制、金融服务中的AI突然瘫痪、企业级服务的AI系统崩溃等等情况,都是不出现还好,一旦出现就要搞个大事情。
由于AI系统紧密而复杂的连接关系,很多关键应用将从属于后端的AI体系,而这个体系又依赖平台提供的训练模型。那么 一旦最后端的平台失守,必然引发规模化、连锁式的崩盘——这或许才是我们今天最应该担心的AI失控。
AI产业的风险,在于某个黑客一旦攻克了机器学习平台的底层漏洞,就相当于把整个大厦的最下一层给炸掉。这个逻辑此前很少被人关注,却已经被证明了其可能存在。而最可怕的是,面对更多未知的漏洞和危险,世界范围内的AI开发者近乎是束手无策的。
家与国:无法逃避的AI战略角力
在认识到AI开发平台可能出现的底层问题,以及其严重的危害性之后,我们可能会联想到国家层面的AI安全与战略角力。
今年7月,哈佛大学肯尼迪政治学院贝尔弗科学与国际事务中心发布的《人工智能与国家安全》报告里,就专门指出AI很可能在接下来一段时间内,对多数国民产业带来革命性的影响,成为产业中的关键应用。那么一旦AI安全受到威胁,整个美国经济将受到重大打击。
同样的道理,当然也适用于今天与美国抗衡的AI大国——中国。这次TensorFlow安全漏洞曝光后,我们联系了一家国内机器视觉方向的创业公司,他们所使用的训练模型全部来自于TensorFlow中的社区分享。沟通之后的结论是,如果真受到黑客恶意模型的袭击,他们的产品将瞬间瘫痪。
这仅仅是一家创业公司, 据了解国内使用TensorFlow进行训练的还包括京东、小米、中兴等大型企业,以及不少科研院所的研发项目。 未来,很有可能还有更多更重要的中国AI项目在这个平台上进行训练部署。当这些东西暴露在黑客攻击的面前,甚至控制权掌握在别国手中,我们真的可以放心这样的AI发展之路吗?
这也绝不是杞人忧天。勒索病毒爆发之后,追根溯源就会发现,这些黑客工具的源头来自美国情报系统研发的网络攻击武器。武器这种东西,制造出来就是为了杀伤的,无论是制造者使用,还是被盗后流出,最终吃亏的只能是没有防范的那群人。
各种可能性之下,AI安全问题在今天已经绝不是儿戏。而中国产业至少能做两件事: 一是组建专业的AI防护产业,将互联网安全升级为AI安全;二是必须逐步降低对国外互联网公司框架平台的依赖度,这里当然不是民粹主义的闭关锁国,而是应该给开发者更多选择,让整个产业自然而然地向国家AI安全战略靠拢。
总之,AI本身的安全防护,已经成为了开发者必须在意、大平台需要承担责任、国家竞争需要争抢的一个环节。希望永远都不要看到AI失控事件,毕竟吃一堑长一智的事情在互联网历史上已经发生太多了。